Radar Remote Sensing of the Meteo-Marine Parameters in the Baltic Sea

Rikka, S.¹, Uiboupin, R.¹, Pleskachevsky, A.², Alari, V.¹, Jacobsen, S.², Kõuts, T.¹

¹ Tallinn University of Technology, Department of Marine Systems, Akadeemia tee 15a, 12618, Tallinn, Estonia

² German Aerospace Center (DLR), Remote Sensing Technology Institute, 28199, Bremen, Germany

Email: sander.rikka@ttu.ee

Motivation

- To develop/improve, validate and demonstrate the value of meteomarine parameters derived from different radar data
 - Assess current state-of-the-art methods in estimating meteo-marine parameters
 - High resolution TerraSAR-X/TanDEM-X StripMap imagery
 - Medium resolution Sentinel-1A/B IW swath imagery
 - Marine radar imagery
 - Validate wave retrieval methods in the Baltic Sea
 - XWAVE_C
 - Pleskachevsky et al. 2016, ISPRS, 119; Rikka et al. 2018, IJRS, 39(4)
 - CWAVE_S1-IW
 - Pleskachevsky et al. (submitted to IJRS); Rikka et al. 2018, Remote Sensing, 10(5)
 - Method for marine radar
 - Rikka et al. (submitted to IEEE Geoscience and Remote Sensing Letters)
 - Validate wind retrieval methods (XMOD-2 and CMOD)
 - Rikka et al. 2018, IJRS, 39(4); Rikka et al. 2018, Remote Sensing, 10(5)
- to compare different radar (TS-X, Sentinel-1, marine radar) wave retrievals with (operational) wave model results
- to examine the added benefits of radar data to maritime situation awareness in the Baltic Sea

Meteo-marine climate in the Baltic Sea

- Complex coastline
- Thousands of islands
- Dominant wind direction
 - Sector 180° 315° (S NW)
 - Frequently observed slanting fetch cases, up to 50°
- Dominant wave period
 - 2-8 s
 - Small swell component in H_s
- Dominant wave height
 - H_s between 0–3 m
 - Up to about 10 m observed
 - Dependent of the region
 - Clear annual cycle
- Short wave "memory"
- Hardly recognizable wave pattern on SAR imagery
- Noisy SAR images

Leppäranta and Myrberg, 2009

Department of Marine Systems Tallinn University of Technology

Radar imaging of sea surface: SAR

Department of Marine Systems Tallinn University of Technology Sentinel-1A/B IW

2nd Baltic Earth Conference 11-15 June 2018, Helsingør

Radar imaging of sea surface: marine radar

- Marine radar imaging introduce additional effects
 - Very high incidnce angles
 - Shadowing
 - Scattering from micro breakers, i.e. whitecapping

Department of Marine Systems Tallinn University of Technology

Data - in situ measurements, radar, wave model

Dev. – algorithm developement; Val. – validation; Comp. – comparison with *in situ* or wave model results; Stat. – seasonal or regional statistics

Sensor	Radar	Pixel size	Temp.	Spatial	Period	No.	Purpos	In situ	Wave
	wavelength		res.	coverage		of	е	collocation	model
						images		S	collocations
TS-X	X-band	3×3 m	On	30× up			Πον	117 LI	
TD-X	3.1 cm		demand	to about	2012-	02	Dev.	102//	55 <i>L</i> _P , γ _P SWAN
				250 km	2017	92	Val.	102 U ₁₀	
							Comp.	44 L _P , γ _P	
Sentin	C-band	10×10 m	1 – 2	250× up		15	Val	52 H _s	49314 H _s
el-1 IW	5.5 cm		days	to about	2015-		VdI.	358 U ₁₀	WAM
				few 10 ³ km	2016	460	Comp.	101 <i>H</i> _s	201 <i>H</i> _s
						400	Stat.		
Marin	X-band	5×5 m	1 h	About		550	Πον	1678 H	-
e radar	3.2 cm			10 km	10.10		DEV.		
				from radar	10.10	Jan.	Val.	1464 H _s	-
				tower	14.11.10	& Jun.			
						2017			

 $H_{\rm S}$ total significant wave height

 U_{10} wind speed

 $L_{\rm P}$ peak wave lenght

 $\gamma_{\rm P}$ peak wave propagation direction

2nd Baltic Earth Conference 11-15 June 2018, Helsingør

6

Data – *in situ* measurements, radar, model Wave

Baltic Earth Conference 15 June 2018, Helsingør

SAR methods: wind

- Sea state is strongly dependent on local wind characteristics
- XMOD-2 and CMOD
- $\sigma_0(U,\theta,\phi) = B_0^p(U_{10},\theta)(1+B_1(U_{10},\theta)\cos(\phi)+B_2(U_{10},\theta)\cos(2\phi))$
 - σ_0 Normalized Radar Cross Section (NRCS)
 - U_{10} wind speed
 - ϕ wind direction relative to flight direction
 - θ local incidence angle
 - B_i tuned function parameters for XMOD-2 and CMOD separately
 - With polarisation ratio for XMOD-2 (Li and Lehner, 2014):
 - $PR = \frac{\sigma_0^{VV}}{\sigma_0^{HH}} = X_0 EXP(X_1\theta)$, where X₀ and X₁ are tuning coefficients
- According to Monaldo et al. 2016, separate GMFs are used to receive wind speed
 - CMOD4 with Thompson, D. R., et al. (1998) PR for HH polarization and CMOD5.N for VV polarization
- Wind direction from Weather Research and Forecasting Model (WRF) is used (Skamarock et al. 2005)
- WRF wind direction are interpolated to the sea state calculation grid

Radar methods: sea state

- Calculation of NRCS from pixel's digital number
- Artefacts filtering
- Subscene normalization $\sigma_n(x, y) = \frac{\sigma_0(x, y) - \langle \sigma_0 \rangle}{\langle \sigma_0 \rangle}$
- Fast Fourier Transform
- Empirical function without transformation into wave spectra
- Additional Grey Level Cooccurance Matrix (GLCM) image statistics
- General methods are based on validation data matchups from open source measurement data from all over the

World Department of Marine Systems Tallinn University of Technology

Sea state parameter estimation

Quality Control: Buoys (location) and Wave model results (spatial distribution)

- XWAVE_C Pleskachevsky et al. 2016, *ISPRS*, 119
- CWAVE_S1-IW Pleskachevsky et al. (*submitted to IJRS*))

2nd Baltic Earth Conference 11-15 June 2018, Helsingør

Radar methods: sea state

- Energy of image spectrum retrieved by FFT operaator
 - $E_{IS} = \int_{k_x^{min}}^{k_x^{max}} \int_{k_y^{min}}^{k_y^{max}} IS(k_x, k_y) dk_x dk_y$ • $k = \sqrt{k_x^2 + k_y^2}$ where k_{max} and k_{min} depend on radar data used
- Significant wave height
 - $H_{\rm S} = a_0 \sqrt{B_0 E_{IS} \tan(\theta)} + \sum_{i=1}^n a_i B_i$
 - θ is local incidence angle
 - a_i are coefficients, and B_i are functions of spectral parameters, wind and GLCM results depending on data/sensor
- Empirical algorithm for marine radar data
 - *H*_s estimation based on image spectra *E*_{*IS*}
 - Calculated parameters are tested against measured in situ values
 - Best-fit trendline technique
 - Pearson correlation coefficient
 - Minimize RMSE
 - $B_0 = f(d, \theta)$
 - $B_1 = f(d, \theta, \overline{x})$, where $\overline{x} = \sum_{i=0}^{2G-2} i P_{x+y}(i)$
 - $B_2 = f(d, \theta, \sigma^2)$, where $\sigma^2 = \sum_{i=0}^{G-1} \sum_{j=0}^{G-1} (i \mu)^2 P(i, j)$
 - *d* distance from radar tower
 - \overline{x} GLCM mean
 - σ^2 GLCM variance
 - P number of collocations in GLCM levels G

10

Department of Marine Systems Tallinn University of Technology

2nd Baltic Earth Conference 11-15 June 2018, Helsingør

Results: validation

- High agreements between in situ wind and radar-derived wind speed, especially for Sentinel-1 results where RMSE less than 1.5 m s⁻¹
- Radar derived H_s accurate, r slightly less than 0.90, RMSE less than 0.5 m
- High agreement in range of 0 – 3 m (typical for Baltic Sea) between SAR and WAM

 Collocation	TS-X	TS-X	Sentinel-1	Sentinel-	Sentinel-	Marine
pair	TD-X vs. in	TD-X vs. <i>in</i>	vs. in situ	1 vs. in situ	1 vs. WAM	radar vs. <i>in</i>
	situ	situ				situ
Parameter	H _s	<i>U</i> ₁₀	H _s	<i>U</i> ₁₀	H _s	H _s
 r	0.88	0.90	0.88	0.91	0.86	0.78
RMSE	0.32	2.02	0.40	1.43	0.47	0.23
SI	0.33	0.24	0.37	0.19	0.33	0.41
п	117	102	52	357	49314	1678

Sentinel-1 data for regional studies

°

atitude

- Wave height up to 7.5 m
- General agreement in the wave height values and location of maximum
- Storm peak area smaller from SAR data
- Storm does not spread as • much to the north as on WAM field
- Maximum H_s higher with SAR-derived results
- Wave field variability (STD) many times larger for SAR dataset
- Variability in wave model fields lost mostly due to wind forcing, local fine-scale wind field variations and gusts are not included in wave model forcing

Rikka et al. 2018, Remote Sensing, 10(5)

Local variability of sea state from high resolution SAR imagery

- General agreement between SWAN wave model results and SAR-derived H_s values
- Wave height, wavelenght and wave propagation direction shows more variability from radar-derived results

Sentinel-1 data for opera

- An independent time series from 1st August 2016 until the end of 2016
- Case 1 mismatch in wave height value on WAM
 - better detailed spatial variability
- Case 3 similar to Case 1 but with more uniform wave field
- Case 2 missing in situ or model data can be covered by SAR
 - **Technical** issues
 - Maintenance of measurement device
- Boos measurement station Södra Östersjön – no *in situ* data since 2011, although common high sea

Coastal radar data for operational service

- Average H_s field during 26.03 – 28.03.2017 for NW storm conditions
- Time series of *in situ* measurements and radar-derive H_s show good agreement during the storm
- Similar H_s field has been shown by other authors for comparable conditions
- Waves propagating into Tallinn Bay between the mainland and Naissaare
- Maximum H_s around the tip of the Paljassaare peninsula
 - Depth around 30 m

15

Statistical mapping of coastal wave field

E.g. Kudryavtseva and Soomere (2017) analysed altimetry data over the Baltic Sea

- Data between 1993-2015
- Output resolution about 0.2×0.1°

- Data between 2015-2016 [•] ^g
 Output resolution 3 nm
- Output resolution 3 nm (interpolated to 1 nm grid)

2nd Baltic Earth Conference 11-15 June 2018, Helsingør

Conclusions

- Methods to estimate total significant wave heights were improved/developed and validated for the Baltic Sea wave climate conditions
 - XWAVE_C
 for H_s (r = 0.88, RMSE = 0.32 m)

 CWAVE_S1-IW
 for H_s (r = 0.88, RMSE = 0.40 m)

 Marine radar
 for H_s (r = 0.78, RMSE = 0.23 m)

 XMOD-2
 for U_{10} $(r = 0.90, RMSE = 2.02 m s^{-1})$

 CMOD
 for U_{10} $(r = 0.91, RMSE = 1.43 m s^{-1})$
- The statistics show that radar-derived results are suitable for routine monitoring of meteo-marine parameters in the Baltic Sea
- SAR-derived values of geophysical parameters are spatially more variable and would provide more detailed wave field compared to wave model
- SAR-derived results could be used for wave model validation
 - Wind data from SAR could be used as wave model forcing

Conclusions

- SAR-derived wave height and wind speed results can replace measurements or wave model results in poorly sampled areas or in cases when data is missing
- SAR enables to observe coastal wave field variations in the Baltic Sea in more detail compare to other EO sensors (altimetry)
- SAR data enable to perform wave climate studies in seasonal and regional scale
- Based on Paljassaare marine radar data analysis wave height can be monitored with high accuracy in space and time
- Considering all above the radar based wind and wave data would be beneficial for maritime situation awareness applications and routine monitoring/forecasting in the Baltic Sea

Thank you for your attention!

~ M~ ~ S I ~

2nd Baltic Earth Conference 11-15 June 2018, Helsingør